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Objective

• Overview of hyperspectral sensing

• Demonstrate how and why detection algorithms for 
hyperspectral imagery are related to detection algorithms 
for MTI radar

– Similar physical assumptions
– Common signal model

• Illustrate detection in hyperspectral imagery with real data 
and familiar detectors
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Outline

• Introduction to hyperspectral sensing
• Signal models
• Detection models
• Hyperspectral detection results
• Conclusion
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Hyperspectral Imaging (HSI) Concept
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Hyperspectral Sensing

• Hyperspectral imaging (HSI) is a form of passive imaging
– Extension of multispectral sensing (e.g., Landsat)
– Hundreds of contiguous, real-valued spectral bands
– Spatial resolution is a function of Instantaneous Field of View 

(IFOV) and altitude
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Outline

• Introduction to hyperspectral sensing
• Signal models

– Hyperspectral sensing
– MTI radar

• Detection models
• Hyperspectral detection results
• Conclusion
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Modeling of Spatially Unresolved 
(Mixed) Pixels
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SIGNAL PROCESSING

• Unmixing
– Find endmembers
– Compute abundances

• Classification
• Detection
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Linear Mixing Model (LMM)
Target and Background Modeling
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MTI Radar

Two-dimensional filtering required to 
cancel interference
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Pulsed Radar Datacube

Samples at same ‘range gate’
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STAP Radar Signal Model

• Space-time snapshot for single target

• is called the space-time steering vector

• Space-time interference (clutter, noise) covariance is
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Hyperspectral Imaging and MTI Radar
Summary of Properties

• Active, coherent sensing
• Resolution is a function of signal 

bandwidth and aperture length

Hyperspectral Imaging MTI Radar
• Passive, incoherent sensing
• Resolution is a function of 

detector IFOV and altitudeS
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m

• LMM assumes distinct spectra 
mix linearly

• Real spectra are sum of 
endmembers weighted by
abundances

• Components add linearly to 
yield received signal

• Complex array measurements 
are sum of steering vectors
weighted by RCS values
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Outline

• Introduction to hyperspectral sensing
• Signal models
• Detection models

– Hyperspectral sensing
– MTI radar

• Hyperspectral detection results
• Conclusion
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Adaptive HSI Detection
Known and Unknown Targets
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Adaptive Detection in STAP Radar
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• Hyperspectral detection has 
replacement targets

• Interference statistics
– Varies with 
– Target displaces background

• Detection results
– Insufficient target data for 

ROC curves
– No theoretical models
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• MTI radar detection has 
additive targets

• Interference statistics
– Independent of target
– Measure locally

• Detection results
– ROC curves indicate PD/PFA

values
– Theoretical models for target
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Comparison of HSI and MTI Detection

Hyperspectral Imaging MTI Radar
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• Additive target model
• Moving target

– Exploit coherency through 
beamforming and Doppler filtering

– RCS and velocity are key 
parameters for target visibility

• Interference covariance 
estimated from sample pixels

– Dimension equals number of 
bands (~ 100--200)

– Can use subset of bands

• Interference covariance estimated 
from local subset of 
pulse/element/range measurements

– Better estimate
– Avoids non-stationarity

• Replacement target model
• Known target

– Measure spectral angle

• Unknown target
– Measure magnitude

• Known target
– Detect target spectrum amid 

background

• Unknown target
– Detect pixels anomalous 

from background

• Moving target
– Detect Doppler effect at specific 

range and angle
– Use data after pulse compression
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Outline

• Introduction to hyperspectral sensing
• Signal models
• Detection models
• Hyperspectral detection results

– Detection taxonomy
– Sub-pixel target detection

• Conclusion
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Taxonomy of Hyperspectral Detectors
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Hyperspectral Detection Results

• HYDICE (HYperspectral Digital Imagery 
Collection Experiment)

– Airborne sensor

• 210 spectral bands
– 399-2501 nm
– Channel widths ~ 3 – 11 nm
– Spatial resolution, 1m x 1m

• Look for sub-pixel targets

Mean Target/Tree Spectra Covariance for Trees

GRASS

TREES

TARGETS

MIXED
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Comparative Detector Performance
Sub-pixel Targets

• 8232 tree pixels
• 8232 synthetic mixed pixels

– 25% / 75%
– 50% / 50%
– 75% / 25%

• Two detectors
– SAM (“unwhitened”)

– GLRT

– Measure range of test 
statistics 
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Conclusions

• Under LMM, hyperspectral sensing shares a common 
signal model with MTI radar

– Endmembers ↔↔ Steering vectors
– Abundances ↔↔ RCS

• Hyperspectral processing has leveraged optimal detection 
algorithms from radar

– Exploit spectral differences between targets and background

• Successful sub-pixel target detection depends upon
– Target/background subspace relationship
– Fraction of target present
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